Loading...
Projects / Programmes source: ARIS

Quantitative light scattering spectroscopy as a process analytical technology in pharmaceutical manufacturing

Research activity

Code Science Field Subfield
2.06.00  Engineering sciences and technologies  Systems and cybernetics   

Code Science Field
2.02  Engineering and Technology  Electrical engineering, Electronic engineering, Information engineering 
Keywords
pharmaceutical processes, pharmaceutical production, process analytical technology, spectroscopy, hyperspectral imaging, light scattering, light propagation models, Monte Carlo simulations
Evaluation (metodology)
source: COBISS
Organisations (3) , Researchers (19)
1538  University of Ljubljana, Faculty of Electrical Engineering
no. Code Name and surname Research area Role Period No. of publicationsNo. of publications
1.  53941  PhD Žiga Bizjak  Systems and cybernetics  Researcher  2022 - 2025  29 
2.  25528  PhD Miran Burmen  Systems and cybernetics  Researcher  2022 - 2025  115 
3.  51911  Lara Dular  Systems and cybernetics  Young researcher  2022  15 
4.  04634  PhD Aleš Iglič  Systems and cybernetics  Researcher  2022 - 2025  1,016 
5.  15678  PhD Boštjan Likar  Systems and cybernetics  Researcher  2022 - 2025  381 
6.  38161  PhD Ana Marin  Systems and cybernetics  Researcher  2023 - 2024  37 
7.  36457  PhD Peter Naglič  Systems and cybernetics  Researcher  2022 - 2024  57 
8.  06857  PhD Franjo Pernuš  Systems and cybernetics  Head  2022 - 2025  520 
9.  54815  Gašper Podobnik  Systems and cybernetics  Young researcher  2022 - 2025  21 
10.  55680  Domen Preložnik  Computer science and informatics  Researcher  2023 - 2024 
11.  28465  PhD Žiga Špiclin  Systems and cybernetics  Researcher  2022 - 2025  159 
12.  23404  PhD Tomaž Vrtovec  Systems and cybernetics  Researcher  2022 - 2025  221 
0787  University of Ljubljana, Faculty of Pharmacy
no. Code Name and surname Research area Role Period No. of publicationsNo. of publications
1.  54786  PhD Ana Baumgartner  Pharmacy  Young researcher  2022 - 2024  32 
2.  21455  PhD Rok Dreu  Pharmacy  Researcher  2022 - 2025  295 
3.  32037  PhD Zoran Lavrič  Pharmacy  Researcher  2022 - 2025  72 
4.  14935  PhD Odon Planinšek  Pharmacy  Researcher  2022 - 2025  458 
5.  34299  PhD Barbara Sterle Zorec  Pharmacy  Researcher  2022 - 2024  51 
2294  Sensum, sistemi z računalniškim vidom d.o.o. (Slovene)
no. Code Name and surname Research area Role Period No. of publicationsNo. of publications
1.  32850  PhD Matjaž Kosec  Systems and cybernetics  Researcher  2022 - 2025 
2.  20383  PhD Dejan Tomaževič  Manufacturing technologies and systems  Researcher  2022 - 2025  95 
Abstract
To simultaneously and fully deterministically quantify the chemical composition, phase content, and morphology of particles in dispersed systems, which in pharmacy are found in a wide variety of dosage forms, their optical properties have to be obtained and exploited. We will apply experimental measuring setups based on fiber probes and hyperspectral imaging systems and use their models (parameters) in Monte Carlo (MC) simulations. As MC simulation results heavily depend on the accuracy of the model, we will first concentrate on accurate modeling of measurement setups. For this purpose, we will develop computationally efficient parametric forward light propagation models that will incorporate all the relevant details of the experimental setup, such as materials forming the probe tip or optical components of the imaging system. This is a precondition for trustworthy simulations of the measured quantities (e.g. reflectance, transmittance) of target samples. The developed light propagation models will be used to optimize the layout and numerical aperture of the multimode optical fibers and optical components of the imaging systems with the aim to attain maximum sensitivity to the morphology and chemical composition of the samples and to develop computationally efficient inverse models that take the measured quantities and produce geometrical and optical properties of the sample from which the morphology, phase content and chemical composition can be inferred. Finally, we will devise procedures for accurate calibration and validation of such measurement systems using optical phantoms with well-defined optical properties and apply the methodology to selected pharmaceutical processes. The methodology that will be developed, tested, and applied, could substantially simplify if not revolutionize the use of spectroscopy in pharmaceutical manufacturing, enable new applications and research opportunities, and serve as a foundation for development of next generation process analytical technologies. The results will be also highly relevant to many other prioritized research fields, such as biophotonics, wearable health monitoring systems, remote sensing, particulate matter pollution, and modelling of light transport in the atmosphere that may improve global climate prediction models.
Views history
Favourite