Using the molecular dynamics simulations with separate thermostats for translational and rotational degrees of freedom, we investigate the effects of water’s rotational motion on the ion pairing of ionic solutes in aqueous solutions. The situation with rotational temperature higher than the translational one, Tr ) Tt, is mimicking the non-equilibrium effects of microwaves on model solutions of alkali halide salts. The simulations reveal that an increase in the rotational temperature at constant translational temperature exerts significant changes in the structure of the solution. The latter are reflected in increased pairing of the oppositely charged ions, which can be explained by the weaker ability of rotationally excited water to screen and separate the opposite charges. It seems that Collins’ law of matching water affinities retains its validity also in the non-equilibrium situation where the rotational temperature exceeds the translational one. On the other hand, the equilibrium effect (i.e., an increase in the solution’s overall temperature T = Tr = Tt) favors the formation of small–small (NaCl), while it has a little effect on large–large (CsI) ion pairs. This is in accordance with water becoming less polar solvent upon a temperature increase. Furthermore, we investigated the effects of excited translational motion of water (and ions) on the ion pairing by increasing the translational temperature, while keeping the rotational one unchanged (i.e., Tt ) Tr). Interestingly, in certain cases the faster translational motion causes an increase in correlations. The temperature variations in the like–ion association constants, K++ and K--, are also examined. Here the situation is more complex but, in most cases, a decrease in the ion pairing is observed.
COBISS.SI-ID: 6091802
The carcinogenesis of urethane (ethyl carbamate), a byproduct of fermentation that is consistently found in various food products, was investigated with a combination of kinetic experiments and quantum chemical calculations. The main objective of the study was to find ΔGa, the activation free energy for the rate-limiting step of the SN2 reaction among the ultimate carcinogen of urethane, vinyl carbamate epoxide (VCE), and different nucleobases of the DNA. In the experimental part, the second-order reaction rate constants for the formation of the main 7-(2-oxoethyl)guanine adduct in aqueous solutions of deoxyguanosine and in DNA were determined. A series of ab initio, density functional theory (DFT), and semiempirical molecular orbital (MO) calculations was then performed to determine the activation barriers for the reaction between VCE and nucleobases methylguanine, methyladenine, and methylcytosine. Effects of hydration were incorporated with the use of the solvent reaction field method of Tomasi and coworkers and the Langevine dipoles model of Florian and Warshel. The computational results for the main adduct were found to be in good agreement with the experiment, thus presenting strong evidence for the validity of the proposed SN2 mechanism. This allowed us to predict the activation barriers of reactions leading to side products for which kinetic experiments have not yet been performed. Our calculations have shown that the main 7-(2-oxoethyl)deoxyguanosine adduct indeed forms preferentially because the emergence of other adducts either proceeds across a significantly higher activation barrier or the geometry of the reaction requires the Watson–Crick pairs of the DNA to be broken. The computational study also considered the questions of stereoselectivity, the ease of the elimination of the leaving group, and the relative contributions of the two possible reaction paths for the formation of the 1,N2-ethenodeoxyguanosine adduct.
COBISS.SI-ID: 5643802
Aflatoxin B1 (AFB1)—the most potent natural carcinogen known to men—is metabolized by cytochrome P450 3A4 (CYP3A4), either to the genotoxic AFB1 exo-8,9-epoxide or to the detoxified 3α-hydroxy AFB1. The activation of the procarcinogen proceeds in a highly cooperative fashion, which differs from common allosteric regulation in the sense that it can be attributed to simultaneous occupancy of a single large and malleable active site by multiple ligand molecules. Unfortunately, unlike in the case of ketoconazole, there is currently no experimental structure available for the doubly ligated CYP3A4-AFB1 complex. Therefore, we employed a sequential molecular docking protocol to create various possible doubly ligated complexes and subsequently performed molecular dynamics simulations and free-energy calculations to check for their consistency with the available experimental data on regio- and stereoselectivity of both AFB1 oxidations as well as with available kinetic data. Only the system in which the first AFB1 molecule was bound in a face-on C8–C9 epoxidation mode and the second AFB1 molecule was bound in a side-on 3α-hydroxylation mode—a result of an unconstrained molecular docking protocol—has successfully fulfilled all the imposed criteria and is therefore proposed as the most likely structure of the doubly ligated complex of CYP3A4 with AFB1. The empirical Linear Interaction Energy method revealed that shape complementarity through nonpolar dispersion interactions between the two bound AFB1 molecules is the main source of the experimentally observed positive homotropic cooperativity. The reported study represents a nice example of how state-of-the-art molecular modeling techniques can be used to study complicated macromolecular complexes, whose structures have not yet been experimentally determined, and to validate these against the available experimental data. The proposed structure will facilitate future studies on the rational design of successful AFB1 modulators or on human subpopulations characterized by specific CYP3A4 polymorphisms that are especially sensitive to AFB1.
COBISS.SI-ID: 5609242
Human X-family DNA polymerases β (Polβ) and λ (Polλ) catalyze the nucleotidyl-transfer reaction in the base excision repair pathway of the cellular DNA damage response. Using empirical valence bond and free-energy perturbation simulations, we explore the feasibility of various mechanisms for the deprotonation of the 3′-OH group of the primer DNA strand, and the subsequent formation and cleavage of P−O bonds in four Polβ, two truncated Polλ (tPolλ), and two tPolλ Loop1 mutant (tPolλΔL1) systems differing in the initial X-ray crystal structure and nascent base pair. The average calculated activation free energies of 14, 18, and 22 kcal/mol for Polβ, tPolλ, and tPolλΔL1, respectively, reproduce the trend in the observed catalytic rate constants. The most feasible reaction pathway consists of two successive steps: specific base (SB) proton transfer followed by rate-limiting concerted formation and cleavage of the P−O bonds. We identify linear free-energy relationships (LFERs) which show that the differences in the overall activation and reaction free energies among the eight studied systems are determined by the reaction free energy of the SB proton transfer. We discuss the implications of the LFERs and suggest pKa of the 3′-OH group as a predictor of the catalytic rate of X-family DNA polymerases.
COBISS.SI-ID: 6068762
Enzymes are one of the most important groups of drug targets, and identifying possible ligand-enzyme interactions is of major importance in many drug discovery processes. Novel computational methods have been developed that can apply the information from the increasing number of resolved and available ligand-enzyme complexes to model new unknown interactions and therefore contribute to answer open questions in the field of drug discovery like the identification of unknown protein functions, chemical carcinogenesis, off-target binding, ligand 3D homology modeling and induced-fit simulations.
COBISS.SI-ID: 5782298