J3-4146 — Final report
1.
Alterations of calcium homoeostasis in cultured rat astrocytes evoked by bioactive sphingolipids

Aim: In the brain, alterations in sphingolipid metabolism contribute to several neurological disorders; however, their effect on astrocytes is largely unknown. Here, we identified bioactive sphingolipids that affect intracellular free calcium concentration ([Ca2+]i ), mobility of peptidergic secretory vesicles, signalling pathways involved in alterations of calcium homoeostasis and explored the relationship between the stimulus-evoked increase in [Ca2+]i and attenuation of vesicle mobility. Methods: Confocal time-lapse images were acquired to explore [Ca2+]i signals, the mobility of fluorescently tagged peptidergic vesicles and the structural integrity of the microtubules and actin filaments before and after the addition of exogenous sphingolipids to astrocytes. Results: Fingolimod (FTY720), a recently introduced therapeutic for multiple sclerosis, and sphingosine, a releasable constituent of membrane sphingolipids, evoked long-lasting increases in [Ca2+]i in the presence and absence of extracellular Ca2+ ; the evoked responses were diminished in the absence of extracellular Ca2+ . Activation of phospholipase C and inositol-1,4,5-triphosphate receptors was necessary and sufficient to evoke increases in [Ca2+]i as revealed by the pharmacologic inhibitors; Ca2+ flux from the extracellular space intensified these responses several fold. The lipid-evoked increases in [Ca2+ ]i coincided with the attenuated vesicle mobility. High and positive correlation between increase in [Ca2+]i and decrease in peptidergic vesicle mobility was confirmed independently in astrocytes exposed to evoked, transient Ca2+ signalling triggered by purinergic and glutamatergic stimulation. Conclusion: Exogenously added cell-permeable sphingosine-like lipids exert complex, Ca2+ -dependent effects on astrocytes and likely alter their homeostatic function in vivo.

COBISS.SI-ID: 31434713
2.
Fingolimod-A sphingosine-like molecule inhibits vesicle mobility and secretion in astrocytes

In the brain, astrocytes signal to the neighboring cells by the release of chemical messengers (gliotransmitters) via regulated exocytosis. Recent studies uncovered a potential role of signaling lipids in modulation of exocytosis. Hence, we investigated whether sphingosine and the structural analog fingolimod/FTY720, a recently introduced therapeutic for multiple sclerosis, affect (i) intracellular vesicle mobility and (ii) vesicle cargo discharge from cultured rat astrocytes. Distinct types of vesicles, peptidergic, glutamatergic, and endosomes/lysosomes, were fluorescently prelabeled by cell transfection with plasmids encoding atrial natriuretic peptide tagged with mutant green fluorescent protein and vesicular glutamate transporter tagged with enhanced green fluorescent protein or by LysoTracker staining, respectively. The confocal and total internal reflection fluorescence microscopies were used to monitor vesicle mobility in the cytoplasm and near the basal plasma membrane, respectively. Sphingosine and FTY720, but not the membrane impermeable lipid analogs, dose-dependently attenuated vesicle mobility in the subcellular regions studied, and significantly inhibited stimulated exocytotic peptide and glutamate release. We conclude that in astrocytes, cell permeable sphingosine-like lipids affect regulated exocytosis by attenuating vesicle mobility, thereby preventing effective vesicle access/interaction with the plasma membrane docking/release sites.

COBISS.SI-ID: 30039513
3.
Regulation of AQP4 surface expression via vesicle mobility in astrocytes

Aquaporin 4 (AQP4) is the predominant water channel in the brain, expressed mainly in astrocytes and involved in water transport in physiologic and pathologic conditions. Besides the classical isoforms M1 (a) and M23 (c), additional ones may be present at the plasma membrane, such as the recently described AQP4b, d, e, and f. Water permeability regulation by AQP4 isoforms may involve several processes, such as channel conformational changes, the extent and arrangement of channels at the plasma membrane, and the dynamics of channel trafficking to/from the plasma membrane. To test whether vesicular trafficking affects the abundance of AQP4 channel at the plasma membrane, we studied the subcellular localization of AQP4 in correlation with vesicle mobility of AQP4e, one of the newly discovered AQP4 isoforms. In cultured rat astrocytes, recombinant AQP4e acquired plasma membrane localization, which resembled that of the antibody labeled endogenous AQP4 localization. Under conditions mimicking reactivation of astrocytes (increase in cytosolic cAMP) and brain edema, an increase in the AQP4 plasma membrane localization was observed. The cytoskeleton remained unaffected with the exception of rearranged actin filaments in the model of reactive astrocytes and vimentin meshwork depolymerization in hypoosmotic conditions. AQP4e vesicle mobility correlated with changes in the plasma membrane localization of AQP4 in all stimulated conditions. Hypoosmotic stimulation triggered a transient reduction in AQP4e vesicle mobility mirrored by the transient changes in AQP4 plasma membrane localization. We suggest that regulation of AQP4 surface expression in pathologic conditions is associated with the mobility of AQP4-carrying vesicles.

COBISS.SI-ID: 30605017
4.
Aluminium-induced changes of fusion pore properties attenuate prolactin secretion in rat pituitary lactotrophs

Hormone secretion is mediated by Ca(2+)-regulated exocytosis. The key step of this process consists of the merger of the vesicle and the plasma membranes, leading to the formation of a fusion pore. This is an aqueous channel through which molecules stored in the vesicle lumen exit into the extracellular space on stimulation. Here we studied the effect of sub-lethal dose of aluminium onprolactin secretion in isolated rat pituitary lactotrophs with an enzyme immunoassay and by monitoring electrophysiologically the interaction of a single vesicle with the plasma membrane in real time, by monitoring membrane capacitance. After 24-h exposure to sub-lethal AlCl(3) (30 microM), the secretion of prolactin was reduced by 14+/-8% and 46+/-11% under spontaneous and K(+)-stimulated conditions, respectively. The frequency of unitary exocytotic events, recorded by the high-resolution patch-clamp monitoring of membrane capacitance, a parameter linearly related to the membrane area, under spontaneous and stimulated conditions, was decreased in aluminium-treated cells. Moreover, while the fusion pore dwell-time was increased in the presence of aluminium, the fusion pore conductance, a measure of fusion pore diameter, was reduced, both under spontaneous and stimulated conditions. These results suggest that sub-lethal aluminium concentrations reduce prolactin secretion downstream of the stimulus secretion coupling by decreasing the frequency of unitary exocytotic events and by stabilizing the fusion pore diameter to a value smaller than prolactin molecule, thus preventing its discharge into the extracellular space.

COBISS.SI-ID: 29371609
5.
Diffusion of D-glucose measured in the cytosol of a single astrocyte

Astrocytes interact with neurons and endothelial cells and may mediate exchange of metabolites between capillaries and nerve terminals. In the present study, we investigated intracellular glucose diffusion in purified astrocytes after local glucose uptake. We used a fluorescence resonance energy transfer (FRET)-based nano sensor to monitor the time dependence of the intracellular glucose concentration at specific positions within the cell. We observed a delay in onset and kinetics in regions away from the glucose uptake compared with the region where we locally super-fused astrocytes with the D-glucose-rich solution. We propose a mathematical model of glucose diffusion in astrocytes. The analysis showed that after gradual uptake of glucose, the locally increased intracellular glucose concentration is rapidly spread throughout the cytosol with an apparent diffusion coefficient (Dapp) of (2.38±0.41) × 10−10 m2s−1 (at 22–24°C). Considering that the diffusion coefficient of d-glucose in water is D = 6.7 × 10−10 m2s−1 (at 24 °C), Dapp determined in astrocytes indicates that the cytosolic tortuosity, which hinders glucose molecules, is approximately three times higher than in aqueous solution. We conclude that the value of Dapp for glucose measured in purified rat astrocytes is consistent with the view that cytosolic diffusion may allow glucose and glucose metabolites to traverse from the endothelial cells at the blood–brain barrier to neurons and neighboring astrocytes.

COBISS.SI-ID: 36617477