J3-2268 — Final report
1.
Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension

The interaction of two types of vesicle systems was investigated: micrometer-sized, giant unilamellar vesicles (GUVs) formed from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and submicrometer-sized, large unilamellar vesicles (LUVs) formed from oleic acid and oleate, both in a buffered aqueous solution (pH 8.8). Individual POPC GUVswere transferred with a micropipette into a suspension of oleic acid/oleate LUVs, and the shape changes of the GUVs were monitored using optical microscopy. The behavior of POPC GUVs upon transfer into a 0.8 mM suspension of oleic acid, in which oleic acid/oleate forms vesicular bilayer structures, was qualitatively different from the behavior upon transfer into a 0.3 mM suspension of oleic acid/oleate, in which oleic acid/oleate is predominantly present in the form of monomers and possibly non-vesicular aggregates. In both cases, changes in vesicle morphology were observed within tens of seconds after the transfer. After an initial increase of the vesicle cross-section, the vesicle started to evaginate, spawning dozens of satellite vesicles connected to the mother vesicle with narrow necks or tethers. In 60% of the cases of transfer into a 0.8 mM oleic acid suspension, the evagination process reversed and proceeded to the point where the membrane formed invaginations. In some of these cases, several consecutive transitions between invaginated and evaginated shapes were observed. In the remaining 40% of the cases of transfer into the 0.8 mM oleic acid suspension and in all cases of vesicle transfer into the 0.3 mM oleic acid suspension, no invaginations nor subsequent evaginations were observed. An interpretation of the observed vesicle shape transformation on the basis of the bilayer-couple model was proposed, which takes into account uptake of oleic acid/oleate molecules by the POPC vesicles, oleic acid flip-flop processes and transient pore formation.

COBISS.SI-ID: 25598681
2.
Vesicle budding and the origin of cellular life

This Minireview provides an appropriate opportunity to demonstrate the connection between the results of some early experimental and theoretical investigations of vesicle budding and the more recent application of the concepts developed there to the process of vesicle self-reproduction. Herein, we also explain why vesicle budding could have preceded the establishment of cellular life.

COBISS.SI-ID: 26244057
3.
A microfluidic diffusion chamber for reversible environmental changes around flaccid lipid vesicles

The reversible environmental changes around flaccid lipid vesicles represent a considerable experimental challenge, particularly because of remarkable softness of flaccid membranes, which can warp irreversibly under the slightest hydrodynamic flow. As a result, we have developed a microfluidic device for the controlled analysis of individual flaccid, giant lipid vesicles in a changing chemical environment. The setup combines the advantages of a flow-free microfluidic diffusion chamber and optical tweezers, which are used to load the sample vesicles into the chamber. After a vesicle is loaded into the diffusion chamber, its chemical environment is controllably and reversibly changed solely by means of diffusion. The chamber is designed as a 250-micrometers-long and 100-micrometers-wide dead-end microchannel, which extends from a T-junction of the main microchannels. Measurements of the flow-velocity profile in the chamber show that the flow rate decreases exponentially and scales linearly with the flow rate in the main channel. The characteristic length of the exponential decrease is 152 micrometers, meaning that a large part of the diffusion chamber is effectively flow-free. The diffusion properties are assessed by monitoring the diffusion of a dye into the chamber. It was found that a simple 1D diffusion model fits well to the experimental data. The time needed for the exchange of solutes in the chamber is of the order of minutes, depending on the solute's molecular weight. Here, we demonstrate how the diffusion chamber can be used for reversible environmental changes around flaccid, giant lipid vesicles and membrane tethers (nanotubes).

COBISS.SI-ID: 28925145
4.
The dynamics of melittin-induced membrane permeability

The transport of co-encapsulated solutes through the melittin-induced pores in the membrane of giant phospholipid vesicles was studied, and the characteristics of the pore formation process were modeled. Molecules of two different sizes (dextran and the smaller, fluorescent marker Alexa Fluor) were encapsulated inside the vesicles. The chosen individual vesicles were then transferred by micromanipulation from the stock suspension to the environment with the melittin (MLT). The vesicles were observed optically with a phase-contrast microscope and by monitoring the fluorescence signal. Such an experimental setup enabled an analysis of a single vesicle's response to the MLT on the basis of simultaneous, separate measurements of the outflow of both types of encapsulated molecules through the MLT-induced pores in the membrane. The mechanisms of the MLT's action were suggested in a model for MLT pore formation, with oligomeric pores continuously assembling and dissociating in the membrane. Based on the model, the results of the experiments were explained as a consequence of the membrane's permeability dynamics, with a continuously changing distribution of pores in the membrane with regard to their size and number. The relatively stable "average MLT pore"characteristics can be deduced from the proposed model.

COBISS.SI-ID: 29690585
5.
On the vesicular origin of the cell cycle

The relation between the phenomena of cell cycle and vesicle self-reproduction has been investigated. It is proposed that vesicle self-reproduction is a process whose mechanism, based on commonly accepted physicochemical principles, could be an essential factor in the transition from the nonliving to the living world. This proposal is supported by first demonstrating the vesicle properties that are relevant to this process. A prototype model of vesicle self-reproduction and its possible generalization are then described. Parallels are drawn between the behavior of the cell cycle and the process of vesicle self-reproduction. The suggestion that the cell cycle is an upgraded version of vesicle self-reproduction is substantiated by ascribing to the latter process the ability to evolve on the basis of selection between vesicle populations.

COBISS.SI-ID: 29828057