Z3-1869 — Interim report
1.
High FREM2 gene and protein expression are associated with favorable prognosis of IDH-WT glioblastomas

World Health Organization grade IV diffuse gliomas, known as glioblastomas, are the most common malignant brain tumors, and they show poor prognosis. Multimodal treatment of surgery followed by radiation and chemotherapy is not sufficient to increase patient survival, which is 12 to 18 months after diagnosis. Despite extensive research, patient life expectancy has not significantly improved over the last decade. Previously, we identified FREM2 and SPRY1 as genes with differential expression in glioblastoma cell lines compared to nonmalignant astrocytes. In addition, the FREM2 and SPRY1 proteins show specific localization on the surface of glioblastoma cells. In this study, we explored the roles of the FREM2 and SPRY1 genes and their proteins in glioblastoma pathology using human tissue samples. We used proteomic, transcriptomic, and bioinformatics approaches to detect changes at different molecular levels. We demonstrate increased FREM2 protein expression levels in glioblastomas compared to reference samples. At the transcriptomic level, both FREM2 and SPRY1 show increased expression in tissue samples of different glioma grades compared to nonmalignant brain tissue. To broaden our experimental findings, we analyzed The Cancer Genome Atlas glioblastoma patient datasets. We discovered higher FREM2 and SPRY1 gene expression levels in glioblastomas compared to lower grade gliomas and reference samples. In addition, we observed that low FREM2 expression was associated with...

COBISS.SI-ID: 34433753
2.
The therapeutic potential of nanobodies

Today, bio-medical efforts are entering the subcellular level, which is witnessed with the fast-developing fields of nano-medicine, nanodiagnostics and nanotherapy in conjunction with the implementation of nanoparticles for disease prevention, diagnosis, therapy and follow-up. Nanoparticles or nanocontainers offer advantages including high sensitivity, lower toxicity and improved safety-characteristics that are especially valued in the oncology field. Cancer cells develop and proliferate in complex microenvironments leading to heterogeneous diseases, often with a fatal outcome for the patient. Although antibody-based therapy is widely used in the clinical care of patients with solid tumours, its efficiency definitely needs improvement. Limitations of antibodies result mainly from their big size and poor penetration in solid tissues. Nanobodies are a novel and unique class of antigen-binding fragments, derived from naturally occurring heavy-chain-only antibodies present in the serum of camelids. Their superior properties such as small size, high stability, strong antigen-binding affinity, water solubility and natural origin make them suitable for development into next-generation biodrugs. Less than 30 years after the discovery of functional heavy-chain-only antibodies, the nanobody derivatives are already extensively used by the biotechnology research community. Moreover, a number of nanobodies are under clinical investigation for a wide spectrum of human diseases including...

COBISS.SI-ID: 34560985