L7-1848 — Interim report
1.
One-pot synthesis of sulfur-doped TiO2/reduced graphene oxide composite (S-TiO2/rGO) with improved photocatalytic activity for the removal of diclofenac from water

Sulfur-doped TiO2 (S-TiO2) composites with reduced graphene oxide (rGO), wt. % of rGO equal to 0.5%, 2.75%, and 5.0%, were prepared by a one-pot solvothermal procedure. The aim was to improve photocatalytic performance in comparison to TiO2 under simulated solar irradiation for the treatment of diclofenac (DCF) in aqueous medium. The obtained composites were characterized for physical-chemical properties using thermogravimetric analysis (TGA), X-ray diractograms (XRD), Raman, scanning electron microscopy (SEM)/energy dispersive X-ray (EDX), Brauner Emmett Teller (BET), and photoluminescence (PL) analyses, indicating successful sulfur doping and inclusion of rGO. Sulfur doping and rGO have successfully led to a decrease in photogenerated charge recombination. However, both antagonistic and synergistic eects toward DCF treatment were observed, with the latter being brought forward by higher wt.% rGO. The composite with 5.0 wt.% rGO has shown the highest DCF conversion at pH 4 compared to that obtained by pristine TiO2, despite lower DCF adsorption during the initial dark period. The expected positive eects of both sulfur doping and rGO on charge recombination were found to be limited because of the subpar interphase contact with the composite and incomplete reduction of the GO precursor. Consequent unfavorable interactions between rGO and DCF negatively influenced the activity of the studied S-TiO2/rGO photocatalyst under simulated solar irradiation.

COBISS.SI-ID: 1538563267
2.
Improved photocatalytic activity of anatase-rutile nanocomposites induced by low-temperature sol-gel Sn-modification of TiO2

This article is a result of previous applied project (L2-7630), but it falls in the research field of this project and it was composed in the time frame of this project. The Sn-modified TiO2 photocatalysts are prepared by low-temperature sol-gel processing based on organic titanium and tin precursors with varied Sn concentrations (from 0.1–20 mol.%). The role of Sn dopant as the promotor of the formation of TiO2 rutile crystalline phase is explained and the optimal Sn concentration for preparation of efficient Sn-modified titania photocatalyst is determined. Up to 40 % increase in photocatalytic activity is achieved in Sn-modified TiO2 photocatalytic thin films dried at 150 °C with low Sn concentrations in the range from 0.1 to 1 mol.%. At low Sn concentrations optimal ratio between anatase and rutile (nano)crystals is obtained, which facilitates charge separation at the TiO2 photocatalyst’s surface. When the concentration of Sn increases above 5 mol.% or when the films are calcined at 500 °C, the relative amount of rutile phase with inferior photocatalytic activity increases and the nanocrystals of titania grow, leading to fewer active sites per unit mass and the reduction of activity in comparison to unmodified TiO2.

COBISS.SI-ID: 5565179
3.
Recent achievements in development of TiO2-based composite photocatalytic materials for solar driven water purification and water splitting

This review article is subdivided into two major parts, namely Photocatalytic water treatment and Photocatalytic water splitting, to give a thorough examination of all achieved progress. The first part provides an overview on photocatalytic degradation mechanism principles, followed by the most recent applications for photocatalytic degradation and mineralization of contaminants of emerging concern (CEC), such as pharmaceuticals and pesticides with a critical insight into removal mechanism, while the second part focuses on fabrication of TiO2-based heterojunctions with carbon-based materials, transition metal oxides, transition metal chalcogenides, and multiple composites that were made of three or more semiconductor materials for photocatalytic water splitting.

COBISS.SI-ID: 1538560963