NC-0002 — Final report
1.
Hydrothermal synthesis of rare-earth modified titania

Low temperature (200°C) Hydrothermal synthesis was used to tailor TiO2 properties by selecting proper synthesis conditions and addition of selected rare earth elements. We studied their influence on the basic and functional properties of TiO2. The selected elements were cerium, lanthanum and gadolinium (Ce, La and Gd) at 1 mol.% concentration. Titanium oxysulphate was used as a titanium source as this is also a reagent used by the TiO2 manufacturers. . Structural properties of samples were determined by X-ray powder diffraction (XRD), and the phase ratio was calculated using the Rietveld method. Optical properties were analyzed by ultraviolet and visible light (UV-Vis) spectroscopy. Field emission scanning electron microscope (FE-SEM) was used to determine the morphological properties of samples and to estimate the size of primary crystals. X-ray photoelectron spectroscopy (XPS) was used to determine the chemical bonding properties of samples. Photocatalytic activity of the prepared photocatalysts as well as the titania available on the market (P25) was measured in three different setups, assessing volatile organic compound (VOC) degradation, NOx abatement, and water purification. It was found out that modification with rare earth elements slows down the transformation of anatase and brookite to rutile. Whereas the unmodified sample was composed of only rutile, La- and Gd-modified samples contained anatase and rutile, and Ce-modified samples consisted of anatase, brookite, and rutile. Modification with rare earth metals has turned out to be detrimental to photocatalytic activity. In all cases, pure TiO2 outperformed the modified samples. Cerium-modified TiO2 was the least active sample, despite having a light absorption tail up to 585 nm wavelength. La- and Gd-modified samples did not show a significant shift in light absorption when compared to the pure TiO2 sample. The reason for the lower activity of modified samples was attributed to a greater Ti3+/Ti4+ ratio and a large amount of hydroxyl oxygen found in pure TiO2. All the modified samples had a smaller Ti3+/Ti4+ ratio and less hydroxyl oxygen.

COBISS.SI-ID: 2430567
2.
Graphene-TiO2 hybrids for photocatalytic aided removal of VOCs and nitrogen oxides from outdoor environment

Photocatalytic oxidation of gaseous pollutants via titanium dioxide is one of the most investigated solar photochemical reactions. In this research work, by means of a green sol-gel procedure, we have coupled titania to graphene (0.5 and 1.0 wt%) aiming to increase the solar photocatalytic activity of the produced hybrid materials. The photocatalytic reactions were assessed by monitoring the removal of nitrogen oxides and two different volatile organic compounds (benzene and isopropanol). Our results highlight the exceptional characteristics of the TiO2/graphene hybrid material (1.0 wt% graphene), and its suitability for multi-purpose applications in the field of environmental remediation. Compared to unmodified titania, the hybrid material with 1.0 wt% graphene shows a clear enhancement in the photocatalytic removal of those hazardous pollutants – corresponding to more than twice the photocatalytic degradation rate. In addition, the same material is highly stable and shows fully recyclability over repeated tests.

COBISS.SI-ID: 25445635