Z1-9165 — Final report
1.
Electrocatalysts stability investigation by electrochemical flow cell analytics

Electrocatalyst degradation due to dissolution is one of the major challenges in electrochemical energy conversion technologies such as fuel cells and electrolysers. While tendencies towards dissolution can be grasped considering available thermodynamic data, the kinetics of material’s stability in real conditions is still difficult to predict and have to be measured experimentally, ideally in-situ and/or on-line. Electrochemical flow cell connected with on-line inductively coupled plasma mass spectrometry (EFC ICP-MS) is a technique developed recently by our group to address exactly this issue. It allows time- and potential-resolved analysis of dissolution products in the electrolyte during the reaction under dynamic conditions. In this lecture, applications of on-line ICP-MS techniques in studies embracing dissolution of catalysts for oxygen reduction (ORR) and evolution (OER) reactions will be discussed.

B.04 Guest lecture

COBISS.SI-ID: 6759450
2.
Method of treating a platinum-alloy catalyst, and device for carrying out the method of treating a platinum-alloy catalyst

In the future, low-temperature proton exchange membrane fuel cells (PEMFC), together with batteries, are expected to compete and eventually replace conventional combustion engines in the automotive industry. Currently, the most promising strategy towards cost-effective and highly-active oxygen reduction reaction (ORR) electrocatalysts seems to be alloying of Pt with less expensive and less noble 3d transition metals (Cu, Co and Ni,…). A crucial issue to be resolved in the near future is, however, to bridge the gap between the remarkable activities measured on the laboratory scale with thin film rotating disk electrode (TF-RDE) and the industrial membrane electrode assembly (MEA). In the case of Pt-Cu alloy, one of the major reasons for this difficulty is inadequate removal of unstable Cu or in other words, improper ‘activation’. Inadequately removed Cu can act as an impurity by poisoning the Pt surface via the well-known underpotential deposition (UPD) interaction, resulting in the inhibition of ORR performance. Due to highly favorable experimental conditions, in-situ electrochemical activation (in-situ EA) in TF-RDE setup masks many of the issues one experiences when trying to do the same ex-situ. Thus, matching the ORR performance obtained after in-situ EA with ex-situ CA in the case of Pt-Cu system has not been properly addressed so far. Based on a deeper understanding of in-situ EA of our in-house designed Pt-Cu/C electrocatalyst we here demonstrate development of carbon monoxide (CO) assisted exsitu CA method. By using this gram scale ex-situ CA method, we for the first time show that a Pt-Cu system can achieve very high ORR performances in TF-RDE setup without any need for the use of in-situ EA.

E.03 Other

COBISS.SI-ID: 6540314