Z1-8158 — Interim report
1.
In silico identification, synthesis and biological evaluation of novel tetrazole inhibitors of MurB

In the context of antibacterial drug discovery resurgence, novel therapeutic targets and new compounds with alternative mechanisms of action are of paramount importance. We focused on UDP-N-acetylenolpyruvylglucosamine reductase (i.e. MurB), an underexploited target enzyme that is involved in early steps of bacterial peptidoglycan biosynthesis. On the basis of the recently reported crystal structure of MurB in complex with NADP+, a pharmacophore model was generated and used in a virtual screening campaign with combined structure-based and ligand-based approaches. To explore chemical space around hit compounds, further similarity search and organic synthesis were employed to obtain several compounds with micromolar IC50 values on MurB. The best inhibitors in the reported series of 5-substituted tetrazol-2-yl acetamides were compounds 13, 26 and 30 with IC50 values of 34, 28 and 25 microM, respectively. None of the reported compounds possessed in vitro antimicrobial activity against Staphylococcus aureus and Escherichia coli.

COBISS.SI-ID: 4478065
2.
Identification of conserved water sites in protein structures for drug design

Identification of conserved waters in protein structures is a challenging task with applications in molecular docking and protein stability prediction. As an alternative to computationally demanding simulations of proteins in water, experimental cocrystallized waters in the Protein Data Bank (PDB) in combination with a local structure alignment algorithm can be used for reliable prediction of conserved water sites. We developed the ProBiS H2O approach based on the previously developed ProBiS algorithm, which enables identification of conserved water sites in proteins using experimental protein structures from the PDB or a set of custom protein structures available to the user. With a protein structure, a binding site, or an individual water molecule as a query, ProBiS H2O collects similar proteins from the PDB and performs local or binding site-specific superimpositions of the query structure with similar proteins using the ProBiS algorithm. It collects the experimental water molecules from the similar proteins and transposes them to the query protein. Transposed waters are clustered by their mutual proximity, which enables identification of discrete sites in the query protein with high water conservation. ProBiS H2O is a robust and fast new approach that uses existing experimental structural data to identify conserved water sites on the interfaces of protein complexes, for example protein–small molecule interfaces, and elsewhere on the protein structures. It has been successfully validated in several reported proteins in which conserved water molecules were found to play an important role in ligand binding with applications in drug design.

COBISS.SI-ID: 6273306
3.
Synthesis and structure-activity relationship study of novel quinazolinone-based inhibitors of MurA

MurA is an intracellular bacterial enzyme that is essential for peptidoglycan biosynthesis, and is therefore an important target for antibacterial drug discovery. We report the synthesis, in silico studies and extensive structure-activity relationships of a series of quinazolinone-based inhibitors of MurA from Escherichia coli. 3-Benzyloxyphenylquinazolinones showed promising inhibitory potencies against MurA, in the low micromolar range, with an IC50 of 8 mM for the most potent derivative (58). Furthermore, furan-substituted quinazolinones (38, 46) showed promising antibacterial activities, with MICs from 1 mg/mL to 8 mg/mL, concomitant with their MurA inhibitory potencies. These data represent an important step towards the development of novel antimicrobial agents to combat increasing bacterial resistance.

COBISS.SI-ID: 4336241