Loading...
Projects / Programmes source: ARIS

Quantum many-body dynamics in nanostructures and quantum information

Research activity

Code Science Field Subfield
1.02.00  Natural sciences and mathematics  Physics   

Code Science Field
P190  Natural sciences and mathematics  Mathematical and general theoretical physics, classical mechanics, quantum mechanics, relativity, gravitation, statistical physics, thermodynamics 
Keywords
nanostructures; quantum mechanics; decoherence; quantum entanglement; quantum information; quantum computers; numerical methods  
Evaluation (metodology)
source: COBISS
Organisations (2) , Researchers (6)
0106  Jožef Stefan Institute
no. Code Name and surname Research area Role Period No. of publicationsNo. of publications
1.  18270  PhD Kristjan Haule  Physics  Researcher  2005 - 2008  69 
1554  University of Ljubljana, Faculty of Mathematics and Physics
no. Code Name and surname Research area Role Period No. of publicationsNo. of publications
1.  22507  PhD Martin Horvat  Physics  Researcher  2007 - 2008  81 
2.  12279  PhD Tomaž Prosen  Physics  Head  2005 - 2008  512 
3.  19162  PhD Tomaž Rejec  Physics  Researcher  2005 - 2008  72 
4.  18084  PhD Gregor Veble  Physics  Researcher  2005 - 2008  55 
5.  21369  PhD Marko Žnidarič  Physics  Researcher  2005 - 2008  156 
Abstract
We plan a fundamental research of dynamics of interacting many-particle quantum systems, with specific applications in quantum information science and the physics of nanostructures, such as quantum wires and quantum dots.The results of our project will have useful applications in the developement of newly emerging quantum information technologies. One important segment ofthis technology, namely the quantum secure communication, is already at the point of entering the market.Our main scientific goals are: (i) understanding the evolution of quantum entanglement - which is the main resource for quantum computation - under non-trivial many-body dynamics, (ii) gain deeper understandingand control over decoherence by means of dynamical unitary models, (iii) control the stability of quantum evolution and quantum computation under external perturbations, (iv) explore the potentials of quantum adiabatic computation, (v) study bound states in quantum point contacts and quantum wires, (vi) study conductance and ground-state properties of coupled quantum dots.Particular emphasis of our work will be given on developing efficient numerical methods to tackle the problems of dynamics and transport in strongly interacting systems. As a common tool useful in different project topics mentioned above we plan do develop new efficient methods to diagonalization of large sparse matrices.
Views history
Favourite