Loading...
Projects / Programmes source: ARIS

Hamilton cycles with rotational symmetry in connected vertex-transitive graphs

Research activity

Code Science Field Subfield
1.01.00  Natural sciences and mathematics  Mathematics   

Code Science Field
1.01  Natural Sciences  Mathematics 
Keywords
Hamilton compression, Hamilton cycle, vertex-transitive graph, semiregular automorphism, automorphism group
Evaluation (metodology)
source: COBISS
Points
11,997.43
A''
291.98
A'
1,990.81
A1/2
4,981
CI10
5,177
CImax
516
h10
27
A1
36.88
A3
1.72
Data for the last 5 years (citations for the last 10 years) on October 15, 2025; Data for score A3 calculation refer to period 2020-2024
Data for ARIS tenders ( 04.04.2019 – Programme tender, archive )
Database Linked records Citations Pure citations Average pure citations
WoS  576  6,824  5,400  9.38 
Scopus  600  7,568  6,085  10.14 
Organisations (3) , Researchers (20)
1669  University of Primorska, Andrej Marušič Insitute
no. Code Name and surname Research area Role Period No. of publicationsNo. of publications
1.  56940  PhD Razafimahatratra Andriaherimanana Sarobidy  Mathematics  Researcher  2023 - 2024  24 
2.  34109  PhD Edward Tauscher Dobson  Mathematics  Researcher  2023 - 2025  77 
3.  52892  PhD Blas Fernandez  Mathematics  Researcher  2023 - 2025  28 
4.  32518  PhD Ademir Hujdurović  Mathematics  Researcher  2023 - 2025  110 
5.  25997  PhD Istvan Kovacs  Mathematics  Researcher  2023 - 2025  222 
6.  24997  PhD Klavdija Kutnar  Mathematics  Researcher  2023 - 2025  264 
7.  18893  PhD Bojan Kuzma  Mathematics  Researcher  2023 - 2025  341 
8.  57308  PhD Michel Lavrauw  Mathematics  Researcher  2023 - 2025  62 
9.  02887  PhD Dragan Marušič  Mathematics  Head  2023 - 2025  604 
10.  21656  PhD Štefko Miklavič  Mathematics  Researcher  2023 - 2025  206 
11.  25610  PhD Marko Orel  Mathematics  Researcher  2023 - 2025  87 
12.  54873  Gregory Caldwel Robson  Mathematics  Young researcher  2023 - 2025 
13.  55934  Draženka Višnjić  Mathematics  Young researcher  2023 - 2025 
14.  50355  PhD Russell Stephen Woodroofe  Mathematics  Researcher  2023 - 2025  86 
0588  University of Ljubljana, Faculty of Education
no. Code Name and surname Research area Role Period No. of publicationsNo. of publications
1.  23501  PhD Boštjan Kuzman  Mathematics  Researcher  2024 - 2025  284 
2.  02507  PhD Aleksander Malnič  Mathematics  Researcher  2023 - 2025  258 
3.  02887  PhD Dragan Marušič  Mathematics  Researcher  2023 - 2025  604 
4.  23341  PhD Primož Šparl  Mathematics  Researcher  2023 - 2025  201 
3770  InnoRenew CoE Renewable Materials and Healthy Environments Research and Innovation Centre of Excellence
no. Code Name and surname Research area Role Period No. of publicationsNo. of publications
1.  51616  PhD Balazs David  Computer science and informatics  Researcher  2023 - 2025  80 
2.  51811  PhD Michael Mrissa  Computer science and informatics  Researcher  2023 - 2025  77 
Abstract
Motivated by recently introduced graph parameter that quantifies how symmetric a Hamilton cycle in a graph can be the proposed project considers symmetries of Hamilton cycles in connected vertex-transitive graphs. The parameter was introduced in 2022 by Gregor, Merino and Muetze. Formally, let X be a graph with n vertices. We say that a Hamilton cycle C=(v0,...,vn-1) is k-symmetric if the mapping f: V(X) -> V(X) defined by f(vi)=vi+n/k for all i=0,...,n-1, where indices are considered modulo n, is an automorphism of X. In this case we have C=(P,f (P), f 2(P),...,f k-1(P)) for the path P=v0,...,vn/k-1.  Therefore the entire cycle C can be reconstructed from the path P, which contains only a 1/k-fraction of all the vertices, by repeatedly applying the automorphism f to it. If we lay out the vertices equidistantly on a circle, and draw edges of X as straight lines, then we obtain a drawing of X with k-fold rotational symmetry, that is, f is a rotation by 360/k degrees. The maximum k for which the Hamilton cycle C of X is k-symmetric is called the compression factor of C and is denoted by kappa(X,C). For a graph X we define kappa(X)=max{kappa(X,C) | C is a Hamilton cycle in X}, and we refer to this quantity as the Hamilton compression of X. If X has no Hamilton cycle, then we define k(X)=0. The quantity kappa(X) can be therefore seen as a measure for the nicest (that is, the most symmetric) way of drawing the graph X on a circle. The main object of the proposed project is to study Hamilton compression of connected vertex-transitive graphs, those for which the existence of Hamilton cycles is already known, and in view of the connection with the polycirculant conjecture, also those for which no information on Hamilton cycles has been obtained thus far. In this sense the proposed project has a clear link to the Lovasz hamiltonicity problem for vertex-transitive graphs.
Views history
Favourite