Loading...
Projects / Programmes source: ARIS

Groups, posets, and complexes

Research activity

Code Science Field Subfield
1.01.00  Natural sciences and mathematics  Mathematics   

Code Science Field
1.01  Natural Sciences  Mathematics 
Keywords
groups, posets, simplicial complexes, Cohen-Macaulay
Evaluation (metodology)
source: COBISS
Organisations (1) , Researchers (10)
1669  University of Primorska, Andrej Marušič Insitute
no. Code Name and surname Research area Role Period No. of publicationsNo. of publications
1.  35452  PhD Nina Chiarelli  Mathematics  Researcher  2021 - 2025  35 
2.  34109  PhD Edward Tauscher Dobson  Mathematics  Researcher  2021 - 2025  77 
3.  52892  PhD Blas Fernandez  Mathematics  Young researcher  2021 - 2022  28 
4.  37715  PhD Slobodan Filipovski  Mathematics  Researcher  2021 - 2025  45 
5.  56756  PhD Francesca Gandini  Mathematics  Researcher  2023 
6.  34562  PhD Matjaž Krnc  Mathematics  Researcher  2021 - 2025  103 
7.  21656  PhD Štefko Miklavič  Mathematics  Researcher  2021 - 2025  206 
8.  30211  PhD Martin Milanič  Mathematics  Researcher  2021 - 2025  327 
9.  55261  PhD Andres David Santamaria Galvis  Mathematics  Researcher  2022 - 2025  15 
10.  50355  PhD Russell Stephen Woodroofe  Mathematics  Head  2021 - 2025  86 
Abstract
The project will study problems at the intersection of topology, algebra, and combinatorics. The main themes of the project are motivated by posets and simplicial complexes arising in group theory. One theme concerns the "universal G-geometry" of the coset poset of a finite group. The PI and his coauthors propose to further their results on the topology of this poset. Related techniques, with a more algebraic geometry flavor, will shed new light on generalized set intersection problems. Another main goal is a minimally classification-dependent proof that the subgroup lattices of nonabelian finite simple groups are not sequentially Cohen-Macaulay. This would make effective a new characterization of solvable groups, highly orthogonal to existing characterizations, and likely would yield better techniques for demarcating between complexes that are sequentially Cohen-Macaulay and those that are not.
Views history
Favourite