Loading...
Projects / Programmes source: ARIS

Multi-scale modeling of non-equilibrium quantum materials

Research activity

Code Science Field Subfield
1.02.01  Natural sciences and mathematics  Physics  Physics of condesed matter 

Code Science Field
1.03  Natural Sciences  Physical sciences 
Keywords
quantum materials, nonequilibrium dynamics, many-body quantum systems, metastability, resistance-switching memory devices, numerical simulations
Evaluation (metodology)
source: COBISS
Organisations (1) , Researchers (11)
0106  Jožef Stefan Institute
no. Code Name and surname Research area Role Period No. of publicationsNo. of publications
1.  55655  PhD Banhi Chatterjee  Physics  Researcher  2021 - 2023  10 
2.  33317  PhD Denis Golež  Physics  Head  2020 - 2024  117 
3.  19274  PhD Viktor Kabanov  Physics  Researcher  2020 - 2024  380 
4.  04540  PhD Dragan D. Mihailović  Physics  Researcher  2020 - 2024  1,257 
5.  25625  PhD Jernej Mravlje  Physics  Researcher  2020 - 2024  141 
6.  57725  PhD Alexander Osterkorn  Physics  Researcher  2023 - 2024  13 
7.  01105  PhD Peter Prelovšek  Physics  Researcher  2020 - 2024  433 
8.  56731  PhD Madhumita Sarkar  Physics  Researcher  2022 - 2024 
9.  29545  PhD Lev Vidmar  Physics  Researcher  2020 - 2024  153 
10.  50514  PhD Jaka Vodeb  Physics  Young researcher  2020 - 2021  94 
11.  23567  PhD Rok Žitko  Physics  Researcher  2020 - 2024  261 
Abstract
The vision of this project is to provide a firm theoretical framework for a description of ultrafast material response and to enhance and simplify the transfer of theoretical ideas to the experimental community. During the last years, PI has developed powerful tools based on numerical solutions of non-equilibrium Keldysh theory allowing for an advanced description of material responses, while still relying on model simplifications. This project aims to push the theory to the level where material-specific properties of strongly correlated systems out of equilibrium are taken into account and hence provide an ab initio, parameter-free theory. We will apply the description to the question of metastability in transition metal dichalcogenides and in particular to the question of the hidden phase in 1T-TaS2. Applications of these powerful theoretical tools and a direct comparison with experimental probes, like time-resolved optical experiments or scanning tunneling spectroscopy will provide a unique insight into the microscopical nature of the metastable phase. We will explore the dynamical interplay of Mott, charge-density-wave and polaronic physics to understand the formation of microscopic domain structures. We will complement the microscopical description with phenomenological approaches to understand the global topological properties of domain wall structures, like chiral or amorphous-like state. The ability to simulate material responses on electronic time scales will provide crucial guidance for the manipulation of materials and their applications for ultra-fast all-electronic resistance-switching memory devices.
Views history
Favourite